
Journal of Aeronautical and Automotive Engineering (JAAE)  
Print ISSN: 2393-8579; Online ISSN: 2393-8587; Volume 2, Number 1; January-March, 2015 pp. 55-61 
© Krishi Sanskriti Publications  
http://www.krishisanskriti.org/jaae.html 
 
 

Aerodynamic Analysis of Ornithopter 
A.M. Anushree Kirthika 

Dept.of Aeronautical Engineering, Rajalakshmi Engineering College, Thandalam, Tamilnadu, India 
E-mail: anushreekirthika.am.2011.aero@ rajalakshmi.edu.in 

 
 

Abstract—An Ornithopter is said to be different from a fixed wing 
aircraft in the following areas such as Kinematics, Aerodynamics, 
navigation,..etc. There are various aerodynamic parameters which 
also includes reduced frequency, Strouhal number are studied along 
with vortex wake theory. The mechanics of flapping wing micro 
aerial vehicle MAV which utilizes the flapping, feathering motion of 
the bird pigeon (Columbia Livia) . A comparative study is carried out 
between UAV (Unmanned Aerial Vehicle) and MAV(Micro Aerial 
Vehicle). On the basis of design of unsteady aerodynamics of 
flapping wing that has been encountered with modified strip theory 
approach. The application of MAV includes in the vast areas of 
surveillance, target seeking, etc. 
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1. INTRODUCTION 

There is a long term human desire to replicate the way bird fly 
in the sky. There has been an evolution of different types of 
system and modeling of aircraft which has now given rise to 
autonomous ornithopter unmanned air vehicle (UAV). 
Ornithopter is said to be different from a fixed wing aircraft in 
the following areas such as kinematics, aerodynamics 
navigation and stability. These are said to be complicated 
when compared . A study of such parameters and by different 
methods by which optimization of design parameters and 
characterization of behaviour in the aerodynamic performance 
and flight control is carried out. It promotes reduction of 
human work in civil and military field. 

There are many theories proposed namely in Vortex wake 
Theory, a shed vortex wake analysis are done through which 
lift calculation by moving the production of a new downward 
momentum in the wake, while the induced drag must be equal 
to the wake’s kinetic energy per unit .From the researches 
there remains a conclusion that there are two types of wake 
,one for low speed and another for high speed. A deep study 
for the propulsive efficiency in the case of UAV and the 
average lift and thrust parameters are studied in the following . 

2. NON CONVENTIONAL AERODYNAMIC 
PARAMETERS 

As in the case of fixed wing flight, there are import on 
dimensional parameters that provide in depth understanding 
about flapping flight aerodynamics and performance. 

1. Reduced Frequency  

It is denoted by “k” (frequency), a ratio of flapping velocity to 
the reference velocity. 

 
  








refU2

C W
k ref   

where  
Cref = Wings reference chord  
Uref = Reference velocity which is the forward flight velocity  
W = Angular velocity of flapping wing  
 
Reduced frequency indicates the degree to which unsteady 
aerodynamic effects are presents. As “K” approaches zero the 
wing tends toward a quasi steady state while that of a slow 
forward flight with large flapping frequency that results in a 
unsteady flow.  

2. Strouhal Number  

Another non dimensional parameter that describes kinematics 
of flapping flight is the Strouhal Number, which describes 
flapping frequency “F” and vertical wing tip amplitude “A” by 
a forward vehicle speed “V”. It indicates propulsive efficiency, 
a measure of mechanical Power input to power output. 

St = V

FA

 

Efficiency of 70% was achieved within Strouhal Number 
range as follows  

0.2 < St < 0.4 
with a peak efficiency at St = 0.3 (approx.). When the 
kinematics cause maximum amplification of the Shed vortices 
in the wake and an average velocity profile equivalent to a jet.  

What type of UAV to be used?  

Some of the factors which are said to be dominating are as 
follows. 
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 Payload weight  
 Altitude  
 Flight speed  
 Duration to stay aloft  
 Maneuverability 
 Controlling 
 Type of launch  
 Type of landing  
 
Fixed wing  
 
 This is the traditional modeling criteria of UAV that was 
sustained for a long period of time since it provides a stable, 
controllable system for various range of aircraft size and 
missions.  
 
These fixed wing aircraft are said to be found difficult to 
maintain at low Reynolds number. 

This is due to the limited usage of span which increases the 
wing loading and decreases lift produced. To avoid such 
problems wing chord is said to be extruded and thereby tends 
to become a plan form “of flying wing” geometric 
configuration. This plan form decreases the aspect ratio and 
increase induced drag with the condition of downwash often 
affecting more than lay the wing span adversely. 

Most of the fixed wings cannot perform VTOL (Vertical take 
off landing) or hover over a target without a specialized 
propulsion system. 

In this paper a design oriented model for the unsteady 
aerodynamic of a flapping wing has been studied using a 
model strip theory approach. 

The analysis is said to be design oriented, capable of being 
readily implemented for the performance prediction of a 
variety configurations. Most of the previous work falls into 
two categories. The first is the quasi – steady model where 
unsteady wake effects are ignored. That is, flapping 
frequencies are assumed to be slow enough that shed wake 
effects are negligible, although such an assumption gives a 
great simplification to the aerodynamic modeling. One of the 
simplest examples is given by Kuchemann and von Holst 
where a rigid elliptical – planform wing is assumed to be 
performing span wise uniform motions, whereas Schmedilder 
presents a much more detailed analysis using lifting- line 
theory to predict the performance of a root – flapping wing. 
One of the most refined versions of the lifting – line approach 
is offered by Betteridge and Arcer, where they use their 
analysis to investigate the possibility of optimized flapping 
behaviour. 

The quasi-steady approach also includes models of 
intermediate complexity, where the aerodynamic points on the 

wing. Walker chooses three points along the semispan of a 
root- flapping wing, and assumes the motion to be such that 
the lift and drag are constant values on the down stroke and 
different constants on the upstroke. Norberg chooses a single 
representative point, at 70% of the semispan, performing 
sinusoidal motion with constant lift – curve slope coefficients 
throughout the flapping cycle. 

The second category accounts for the unsteady aerodynamic 
effects by modeling the wake in a variety of ways. Among 
those analyses that include the mean lift required for 
equilibrium flight (as compared with studies of animal 
swimming), Philips, East, and Pratt represent the unsteady 
wake of a root – flapping non twisting rigid wing with discrete 
nonplanar vortex elements which include spanwise vortices 
spaced one per half cycle aft of the quarter – chord bound 
vortex. A similar model was developed by Blackwell and 
Archer for their study of the propulsive characteristics of a 
twisting wing, root flapping with constant, but unequal, 
upstroke and down stroke motions (“saw tooth motion”) 

The present analysis does not assume a variable span. Since 
the motivation was to study the feasibility of mechanical 
flapping wing flight, it was felt that an important first step was 
to see if this was achievable without having to envision a span 
variation mechanism. However, the kinematics do allow for 
span wise bending and twisting. 

3. CASE STUDIES  

Case 1  

Methods of Analysis for UAV 

The kinematics for each section of the wing are said to be 
analyzed from the Fig. 1.1 on using the leading edge as a 
reference point, the section’s motion consists of a plunging 
velocity, h, and a pitch angle, , where h is not necessarily 
perpendicular to the mean stream velocity, U. 

(dNc) sep  =  The midchord cross –chord force  
(dNa) sep  = An apparent- mass force that is assumed to  
   be 1/2 dNa 

(dNa)   =  Apparent mass force normal to the 
chord at     the 1/2 chord location . 
 

 
Fig. 3.1: Aerodynamic forces of wing section and  

motion variables  
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If the wing is root flapping, as shown in Fig.1.2, then h would 
be perpendicular to the flapping axis.  

 

Fig. 3.2 Assumed strip theory  
equivalence to whole wing motion 

The wing’s aspect ratio is assumed to be large enough that the 
flow over each section is essentially chord wise (in the mean – 
stream direction). Therefore, the section’s circulatory normal 
force is given by 

dNc = cdyynC
UV

)(
2


     (1) 

V is the flow’s relative velocity at the 1/4 –chord location, and  

Cn(y) = 2 )θ''(      (2) 

The parameters in Equation (2), are illustrated in Fig.3.1, 
where it is seen that the angle of the zero lift line, 0, is a fixed 

value for the aerofoil, and is the section’s mean θ is the 

section’s mean pitch angle. Further, θ is given by the sum :  

θ = wa θθ        (3) 

Where aθ  is the angle of the flapping axis with respect to the 

mean – stream velocity U and wθ is the mean angle of the 
chord with respect to the flapping axis. Note that if the wing 
does not have a flapping axis (such as for whole – wing 

motions), the θ is the wing’s mean pitch angle.  

The reaming angle in Equation (2), ', is given by  

U

w
α

AR2

(k)'ARC'α 0















    (4) 

Where  is the relative angle of attack at the ¾ - chord 
location due to the wing's motion :  

   
U

θθUcθ
4

3
θ(θhCos

α
a


   (5)  

The coefficient of  in Equation (4) accounts for the wing's 
finite span unsteady vortex wake by means of a strip theory 
model. As in Fig 3.2, each chordwise strip on the wing is 
assumed to act as if it were part of an elliptical planform wing, 
of the same aspect ratio, execution of simple harmonic whole 
wing motion identical to that the strips. For such a wing, on 
deviation of the unsteady normal – force coefficient, Cn is 
given by  

Cn =  jones)k(C2     (6)  

 
Where C(k)Jones is a modified The odorsen function for finite 
AR wings and k is the reduced frequency, given by 

k =
2U

cω
      (7)  

 
C (k)Jones is a complex function, and it was found convenient 
to use Scherer's alternative formulation :  

C(k)Jones = 
AR)(2

(k)'ARC


    (8)  

 
Where, for the complex term given by  

C'(k) = F'(k) +iG'(k)     (9)  
 
Scherer presents the approximate equations :  

F'(k) = 1  22

2

2

1
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kC


     

G'(k) =  22

k

2

21

Ck

CC


   

C1 =  AR

AR

32.2

5.0
  

C2 = 
AR
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0.181   

Upon noting that the assumed motion is given by  
iωAeα       (10)  

 
One obtains, when Equations (7), (9), and (10) are substituted 
into Equation (4), that  
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The downwash term, w0 / U, is due to the mean lift produced 

by 0 and θ , stay consistent with the strip theory model 
assumed for the unsteady aerodynamic terms, the w0/U could 
be approximated by the downwash for an untwisted elliptical 
planform wing,  

 
AR2

θα2

U

w 00




       (12) 

 

However, if the wing has significant span wise variation of 0 

+ θ , then one may wish to calculate w0/U by a more accurate 
method, such as the extended lifting – line theory for twisted 
wings,  

Returning to Equation (1), note that the flow velocity, V, must 
include the downwash as well as the wing's motion relative to 
U. This accomplished by including ' along with the 
kinematic parameters: 

     2

1
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θ'UθθhSinθUCosV
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(13) 

An additional normal force contribution comes from the 
apparent mass effect, which acts at the midchord (shown 
Fig.1.1) is given by .  

dyv
4

ρπc
αdN 2

2

     (14) 

 

Where v2 is the time rate of change of the midchord normal 
velocity component due to the wing's motion:  

v2 = U - cθ
4

1
     (15)  

Therefore, the section's total attached flow normal force is 

d/V = dNc + dNa     (16) 

The section's circulation distribution likewise generates forces 
in the chordwise direction, as illustrated in Fig.1.1 From De 
Laurier, the chordwise force due to camber is given by  

dDcamber =   cdy
2

ρUV
θα'2π 0       (17) 

Garrick's expression for the leading edge suction of a two 
dimensional aerofoil may be applied to the present strip theory 
model by extending it with Equation (4) to obtain  

dTs = cdy
2

ρUV

U

c

4

1
θα'2πη

2θ

s 









   (18) 

The efficiency term, s, accounts for the fact that most 
aerofoils, due to viscous effects have less than the 100% 
leading edge suction predicted by potential – flow theory.  

Viscosity also gives a chordwise friction drag  

dDf = (Cd)f cdy
2

ρV2
x     (19) 

where Vx is the flow speed tangential to the section, 
approximated by 

Vx = UCos - hSin  αθθ     (20) 

And (Cd)f is the drag coefficient due to skin friction, for which 
expressions may be found in Hoerner. Thus the total 
chordwise force is 

dFx = dTs –dDcamber -dDf    (21) 

An advantage of the strip theory model is that it allows for an 
approximation to localised post stall behaviour. The dynamic 
stall angle is obtained from Prouty.  

stall = (stall) static +  
2

1

2U

cα






   (22) 

And is chosen to apply at the leading edge. Therefore, the 
criterion for attached flow over the section is  

(stall)min   maxstallα
U

cθ

4

3
θα' 








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






  

 (23) 

When the attached flow range is exceeded, totally separated 
flow is assumed to abruptly occur, for which condition all 
chordwise forces are negligible:  

dDcamber’ dTs' dDf = 0     (24) 

and the normal force is given by  

dN = (dNc)sep + (dNa)sep 

(dNc)sep’ shown in Fig.1, is due to cross flow drag:  

(dNc)sep = (Cd)cf cdy
2

ρVVn
    (26) 

Where  

V =  2
1

2
n

2
x VV        (27) 

And Vn is the midchord normal velocity component due to the 
wing’s motion (note that v2, in Equation (15), is the linearised 
time – derivative of Vn): 

Vn = hCos   USinθcθ
2

1
θθ a     (28) 

Also, (dNa)sep is due to apparent – mass effects, assumed to be 
half that of the attached flow value in Equation (14) :  
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(dNa)sep = adN
2

1
     (29) 

Now, the equations for the segment’s instantaneous lift and 
thrust are  

dL = dNCos + dFxSin     
  (30) 

dT = dFxCos - dNSin    (31)  

These may be integrated along the span to give the whole 
wing’s instantaneous lift and thrust :  

L(t) = 2 2

1

0
Cosγ      (32) 

T(t) = 2  2

b

0
dT  

where (t) is the section’s dihedral angle at that instant in the 
flapping cycle.  

 =        (33) 

where  = cycle angle t= that instant of time  

so that the average lift and thrust are expressed as  

dφL(φ
02π

1
L

2π
)  

dφT(φ(
02π

1
T

2π

     (34)  

To obtain the instantaneous power required to move the 
section against its aerodynamic loads. For attached flow, this 
is given by 

dPin = dFx hSin     



  cθ

4

1
θθhCosdNθθ aa  

 +dNa θdMθdMcθ
4

1
aac 



    (35) 

where dMac is the section’s pitching moment about its 
aerodynamic centre, and dMa includes apparent –camber and 
apparent – inertia moments:  

dMa = dyθρπc
128

1
 θUρπc

16

1 43




    (36) 

 

For separated flow, the input power expression becomes  

dPin = dNsep   



  cθ

2

1
θθhCos a    (37) 

The instantaneous aerodynamic power absorbed by the whole 
wing is found from  

Pin(t) =  2

b

0
indP2      (38) 

and the average input power, throughout the cycle, is given by 

in

2π

0
in dP

2π

1
P        (39) 

Upon noting that the average output power from the wing is  

UTPout       (40) 

the average propulsive efficiency may be calculated from  

in

out

p P

P
η       (41) 

Case 2  
Method of Analysis for MAV 
There are four degrees of freedom in each wing that are used 
to achieve flight in nature namely flapping, lagging, 
feathering, and spanning. Flapping is an angular movement of 
the wing about an axis in the direction of flight. Lagging is an 
angular movement of the wing about a vertical axis which 
effectively moves the wing forward and backward parallel to 
the body. Feathering is the angular movement about an axis in 
the wing which tilts the wing to change its angle of attack. 
Spanning is the expanding and contracting of the wing span. 

These motions somehow requires a universal joint similar to 
the shoulder of a human being. But not all flying animals 
implement all of these motions. Most insects for instance do 
not use the spanning technique. Thus, flapping flight is 
possible with possible few combinations of these four degrees 
of freedom. Flapping flight is actually possible with only one 
degree of freedom by using “flapping” alone. 

Several studies have been made on flapping flight using this 
one degree of freedom. From the work of Vest and Katz they 

pointed out that one-degree of freedom flapping MAV, 
modeled after a typical pigeon (Columba livia), can develop 
sufficient thrust to propel itself in a steady forward flight . 

Of the four degrees of freedom available in flapping flight in 
nature, it is the combination of the flapping and feathering 
motions that makes the most significant contribution to the lift 
and thrust production. It is therefore practical to just utilize 
these two degrees of freedom in designing and building an 
effective bird-like MAV. Using these two degrees of freedom 
there are four important variables with respect to wing 
kinematics: (1) wing beat frequency, (2) wing beat amplitude, 
(3) wing feathering as a function of wing position, and (4) 
stroke plane angle. When properly coordinated, these motions 
can provide lift not only during downstroke, but also during 
upstroke. The ability to generate lift on both strokes leads to 
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the potential for hovering flight in insect-like (entomopter) 
and bird-like (ornithopter) micro aerial vehicle.  

Coupled flapping – feathering motion  

With the aid of the analysis of the flow around a 2D airfoil in a 
combined plunging and pitching motion, the kinematics of the 
coupled flapping and feathering motion coupled be well 
established as described in Fig.3.3 

The flapping angle,  (the angle of inclination against the 
horizontal X- Y plane), and the feathering or pitching angle 
“” and the plunging position “Z” are given by the following 
relationships,  

 (t) = (0) cos (2ft)    (1) 

 (t) = (0) + (1) cos (2ft + )  ` (2) 

z(t) = (zl) cos (2ft)     (3) 

where f is the oscillation frequency,  is the phase angle, and 
0 is the mean angle of attack. 

 

Fig. 3.3: Coupled plunging in and pitching motion 

 

Fig. 3.4: Motion coordination by phase angle  

 

where f is the oscillation frequency  is the phase angle, and 
0 is the mean angle of attack. The pitching motion defined in 
Eq.(2) consists of a time – dependent part with amplitude 1. 

The momentary pitching angle (t) is counted from the 
horizontal parallel to the X – axis and the pitching motion can 
vary in phase  relative to the plunging motion. The 
oscillation frequency ‘f’ is most often expressed in non – 
dimensional form as the reduced frequency (k),  




U

πfc
k      (4) 

Where U
 is the free stream velocity and C is the chord length. 

The reduced frequency, together with the dimensionless 
plunging amplitude (Zl, /C) influences the angle of attack () 
caused by pure plunging as shown in the Fig. and is given by, 






U

z(t)
Tan(t)γ     (5) 

The maximum angle of attack through pure plunging for small 
values of k and Zl/C is approximately,  

l  
c

2kzl

     (6)
 

where 1 = Tan -  

The momentary effective angle of attack,  ( ±), can be 
enlarged or diminished depending on phase shift  of the super 
imposed pitching motion in Eq.(2), and shown in fig.3.4 where 
the phase angle φ= 90o. In order to ensure attached flow 
throughout the entire flapping cycle, λ is to be kept below 12o 

to 15o.  

Basic aerodynamics  

A flapping wing generates lift and thrust mainly by virtue of 
the so-called Knoller-Betz effect that is, the wing oscillations 
induce vertical lift force and longitudinal thrust force 
components of the aerodynamic force (the force normal to the 
direction of the free stream velocity relative to the flapping 
wing), and by the complex effects of the generated vortex 
structures which enable high lifting and propulsive properties. 
Lift and thrust generation can be increased by increasing the 
flapping amplitude or the flapping frequency as long as the 
flow remains attached to the airfoil. The aerodynamic lift, 
drag, and thrust coefficients can be expressed as follows:  

,

S2ρU
2

1
C,

S2ρU
2

1

D
C,

S2ρU
2

1

L
C

T
TDL
   (7)  

where L, D, T, U, S, and ρ are lift, drag, thrust, flight speed, 
wing planform area, and air density, respectively. In steady 
level flight, the lift force equals the body weight, Wg, and so 
the wing loading can be expressed as  
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LC2ρU
2

1
/SgWLSC2ρU

2

1
gWL    (8)  

 

Power Requirement  

It depends on  

1) Weight of MAV 

2)  Flight speed  

3) Aerodynamic parameter (CL/CD) 

As the size reduces MAV becomes lighter and small physical 
size with low flight speed that results in lower Reynolds 
number, this causes (CL/CD) to decrease.  

In a steady level flight, the average power output is given by  

UTP
out


     (9)
 

T Average thrust  

U = Flight speed  

The propulsive efficiency, P, for one flapping cycle. This  

P measure the transformation essential parameter since it 
measures how well the input where  

Pin / Pout = P      (10) 

From the formulas by Rayner and Gordon for birds in 
continuous vortex wake model, the estimation of power to 
mass ratio for machines that can attain performance compared 
to birds. 

Maximum range speed  

  0.0950.5530.413

SBM10.00m/sVmr


   (11) 

Mechanical power at that speed  

  0.2751.8181.590

mr
SBM21.72WP



    (12) 

Total power  

  0.5231.2251.145

met
SBM61.114WP



    (13) 

where  

M = mass (kg)  

B = Wingspan (m)  

S = Wing plan form area (m2) 

The total power for flight in a bird is measured as the total rate 
of metabolic energy uptake Pmet 

4. CONCLUSION 

 Through these methods of analysis one shall predict the 
flight performance of harmonically flapping wings. The major 
assumptions are that, first, the semi span remains constant 
throughout the motion; and second, modified strip theory is 
used to model the aerodynamics. However, general 
distributions of span wise twisting and first order bending may 
be specified. Also, certain important real fluid effects are 
accounted for, such as post stall behaviour and partial leading 
edge suction. These are features which should be included in 
any accurate flapping- wing analyses, especially when applied 
to flying animals which usually have sharp edged wings with 
little leading edge suction.  

This analysis for UAV shows that the constant – semi span 
model is also capable of efficient flapping – wing flight for 
certain conditions, such as may be experienced by large 
animals at high speeds, or ornithopter. 

In the case of MAV the wing loading summarizes the opposing 
action between two classes of forces in flight: (1) the 
gravitational and inertial forces, and (2) the aerodynamic 
forces that are responsible for creating lift and thrust. The 
range of wing loading is limited by physical constraints. As an 
example, larger birds do not have high flapping frequency 
since their bones cannot withstand the stresses imposed by 
moving such a large inertial load. 

Another important parameter in forward flight is the reduced 
frequency, k, which is a measure of the degree of unsteadiness 
and is given earlier in Eq. (4). The reduced frequency is 
simply a comparison of the angular velocity and the flow 
speed. As k increases, so does the flow unsteadiness. k = 0 
corresponds to a rigid fixed-wing vehicle, while the normal 
cruising flight of a typical pigeon has k = 0.25. 
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